Endpoints of multi-valued cyclic contraction mappings
author
Abstract:
Endpoint results are presented for multi-valued cyclic contraction mappings on complete metric spaces (X, d). Our results extend previous results given by Nadler (1969), Daffer-Kaneko (1995), Harandi (2010), Moradi and Kojasteh (2012) and Karapinar (2011).
similar resources
Approximation of endpoints for multi-valued mappings in metric spaces
In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.
full textOn Multi-valued Weak Contraction Mappings
Received: December 21, 2010 Accepted: January 7, 2011 doi:10.5539/jmr.v3n2p151 Abstract In this paper, we study fixed point theorems for multi-valued weak contractions. We show that the Picard projection iteration converges to a fixed point, give a rate of convergence and generalize Collage theorem. This work includes results on multi-valued contraction mappings studied by (Kunze, H.E., La Torr...
full textCommon fixed point theorem for cyclic generalized multi-valued contraction mappings
In this paper, we extend a multi-valued contraction mapping to a cyclic multi-valued contraction mapping. We also establish the existence of common fixed point theorem for a cyclic multi-valued contraction mapping. Our results extend, generalize and unify Nadler’s multi-valued contraction mapping and many fixed point theorems for multivalued mappings. © 2012 Elsevier Ltd. All rights reserved.
full textOn best proximity points for multivalued cyclic $F$-contraction mappings
In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.
full textNonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings
In this paper, based on viscosity technique with perturbation, we introduce a new non-linear viscosity algorithm for finding a element of the set of fixed points of nonexpansivemulti-valued mappings in a Hilbert space. We derive a strong convergence theorem for thisnew algorithm under appropriate assumptions. Moreover, in support of our results, somenumerical examples (u...
full texton best proximity points for multivalued cyclic $f$-contraction mappings
in this paper, we establish and prove the existence of best proximity points for multivalued cyclic $f$- contraction mappings in complete metric spaces. our results improve and extend various results in literature.
full textMy Resources
Journal title
volume 9 issue 1
pages 203- 210
publication date 2018-08-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023